If it's not what You are looking for type in the equation solver your own equation and let us solve it.
131(t)=16t^2+96t+3
We move all terms to the left:
131(t)-(16t^2+96t+3)=0
We get rid of parentheses
-16t^2+131t-96t-3=0
We add all the numbers together, and all the variables
-16t^2+35t-3=0
a = -16; b = 35; c = -3;
Δ = b2-4ac
Δ = 352-4·(-16)·(-3)
Δ = 1033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-\sqrt{1033}}{2*-16}=\frac{-35-\sqrt{1033}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+\sqrt{1033}}{2*-16}=\frac{-35+\sqrt{1033}}{-32} $
| 16y−9y+-11y=-4 | | 5y-3y-2y+3y=12 | | 18g-5g+4g-2g-14g=7 | | 4(m-7+2m=2 | | 19a+2a+2a-18a+4a=18 | | 12h-10h-h=6 | | 12j-11j=15 | | 11n—9=171-n | | 6y-9-2y-5=8y+17-4y | | 50+x5.50=18.50+x7.75 | | 12j−11j=15 | | 10j-8j=8 | | 18=3(y-4)+2y | | 16=6+2u | | 2x3–5x2–12x=0 | | 17x-10=34-5x | | 36=-4u+8(u+7) | | -3+y/3=-12 | | 4x^2-18x+2.5=0 | | 3/2(m+12)=21 | | 5x+12=2x+93 | | 6(w-6)-4w=38 | | -2(4x+5)+6=29 | | -9y^2+6y-1=0 | | 12(a/4-2a/3)=-5/2(12) | | B-9y^2+6y-1=0 | | 198-5n=6n+44 | | -2z^2+3z+2=0 | | -6v+12=1 | | v/11=3/17 | | 5n-9=151-5n | | (x—3)/2+2/x+3=13/2 |